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Abstract

This paper studies the problem of “blasting™ attacks in
the Chord P2P network. Blasting is an application-layer
denial-of-service (DoS) attack in which malicious nodes
generate excessive numbers of queries. To deal with the
problem, we develop a simple traffic model that captures
query flows in Chord, and we use the model to determine
how to maximize system throughput. We then propose traf-
fic management schemes and derive traffic limits that can
be imposed on query flows. We evaluate our proposed traf-
fic management schemes and limits via simulation. We find
that our techniques recover system throughput in the face
of blasting attacks and virtually eliminate damage due to
excess queries injected by malicious nodes.

1 Introduction

In this paper, we study application-layer denial-of-
service (DoS) attacks in Chord [22], and propose simple
techniques to contain such attacks. Chord is a DHT (dis-
tributed hash table) that is used as a building-block in peer-
to-peer (P2P) systems including i3 [21], CFS [4], SOS [13],
and next-generation DNS [3, 17]. Many of these systems
assume that Chord is resilient to attacks in order to pro-
vide higher-level functionality. However, Chord is vulner-
able to numerours threats, as are other DHTs. We choose
to study Chord specifically because it is one of the DHTs
most resilient to node failure and/or attacks against individ-
ual nodes®. We note that while we focus on Chord for con-
creteness in this paper, our results generalize to other DHTS
in a straightforward fashion.

Ina DHT, network nodes are responsible for storing a set
of (key,value) pairs such that each key uniquely maps to
a single node. DHTSs support a lookup operation. Given
a key, and starting at any node, it is possible to route a
query for that key to the node that stores the corresponding
(key,value) pair by traversing intermediate nodes. (Each

1Chord is one of the DHTSs that has the fewest constraints of al the
DHTs studied in [11] as to which nodes can appear in particular entries of
arouting table, and is thus most resilient to failures of particular nodes.
Ratnaswamy et. al. present detailed simulation results and analysis of the
advantages of Chord as opposed to other DHTsin [11].

node uses a “routing” or “finger” table to determine the next
hop for a given query.)

Unfortunately, there are several ways that malicious
nodes can cause the lookup operation to malfunction. For
instance, malicious nodes may decide to “forget” about
some (key,value) pairs that are mapped to them. When
a query arrives at a malicious node, it may respond stating
that no value for the query key exists, or it may not answer
the query at all. To defend against such malicious nodes,
pairs may be replicated at multiple nodes.

Another possible attack can occur if a malicious node
happens to be on the path from a query’s source to its des-
tination. The malicious node may decide to not forward the
query, and the query may never make it to its destination. To
resolve the problem, when good nodes issue queries, they
may replicate queries along different paths to route around
the malicious node. Castro et. al. [2] use such an approach
to securely route in the Tapestry DHT [24].

Even if malicious nodes route properly, they could con-
duct an application-layer DoS attack in which they intro-
duce so many “useless” queries into the system that legiti-
mate queries issued by good nodes are denied service. We
call such an attack a “blasting” attack, and we focus on
studying them within the context of the Chord DHT. It is
very hard for good nodes to distinguish queries that were
generated by other good nodes from queries that were gen-
erated by malicious nodes. Because nodes in a P2P system
are required to forward queries on behalf of each other, a
malicious node could always claim that it is just forward-
ing heavy traffic on behalf of other nodes. In this paper,
we study “smart” ways of deciding which queries to answer
and forward. We do not model data and query replication
mechanisms in our work, but such mechanisms can be used
together with the techniques we propose.

We should always attempt to prevent malicious nodes
from joining in the first place. For instance, Castro et. al. [2]
propose the use of certified node ids to prevent malicious
nodes from joining the system. However, malicious nodes
could compromise the security of existing nodes that al-
ready have certified ids, and take control of them to mount
blasting as well as other attacks. Hence, in addition to safe-



guards that make it hard for malicious nodes to join, it is
important to design the network to be resilient to the pres-
ence of malicious nodes.

Our approach in this paper is to propose and evaluate
traffic management policies that contain (or limit) exces-
sive traffic introduced by malicious nodes. The policies that
we propose are complementary to existing techniques, and
provide defense-in-depth within the context of a Chord net-
work. In particular:

e \We develop a basic traffic model that captures the key
decisions that nodes need to make to manage query
traffic in Chord. We use our model to determine how
to maximize system throughput. We also describe our
threat model in terms of our traffic model. (Sections 3
and 5)

e \We develop various traffic management policies that
nodes can use to decide which queries to answer and
drop to maximize system throughput when an exces-
sive number of queries have been admitted to the system
(i.e., when a DoS attack is taking place). (Section 4)

e We derive limits on the number of queries nodes should
admit and forward. (Section 6)

e We evaluate our proposed traffic management policies
and traffic limits (Section 7). We find that our tech-
niques recover system throughput in the face of blast-
ing attacks and virtually eliminate damage due to excess
queries injected by malicious nodes.

2 Review of Chord

We provide a brief review of how Chord works here. The
reader is also encouraged to consult [22] for a detailed treat-
ment of Chord.

In Chord, a set of data items {Dy, D, ..., Dy} is dis-
tributed across the nodes { Ny, Na, ..., N, }, such that each
data item can be predictably found at a particular node.
Each of the data items and node ids are mapped to an ad-
dress space [0, A). Each node N; hashes its IP address to
determine its own address h(NN;) € [0, A). Each node is re-
sponsible for storing data items that map to a subset of the
address space that is “close” to its address h(N;).

When a node N; is interested in searching for a data item
D;, N; computes (using a hash function) the address of the
data item h(D;) € [0, A). If N; is the node that handles
the corresponding part of address space, the data item can
be found locally. If not, then N; consults a locally stored
routing table to determine which “adjacent” nodes are re-
sponsible for addresses that are closest to h(Dj).

Each node maintains a routing table with logn entries.
Theith entry in a node’s routing table points to another node
whose hash is the smallest in the network that is larger than
h(N;)+2%=1. To search for a data item with id a, a node NV;
determines which routing table entry j for which A(V;) +
271 < a < h(N;) + 27, and forwards its query to node
pointed to by the jth entry in the routing table. On average,

a query will be forwarded % log n times before reaching its
destination [22].

3  Model

In this section, we describe a model that we use to cap-
ture the query flows in a DHT with IV nodes such that we
can study blasting attacks. Our model is a discrete-event-
based model. In each time step, a node conducts three
actions: 1) it admits new queries into the system, 2) it an-
swers queries that have arrived for which it is responsible
for storing the corresponding data items, and 3) it forwards
any remaining queries to other nodes as per its routing ta-
ble. Each of these actions takes some amount of process-
ing capacity, but for simplicity we assume that each such
action requires one unit of processing capacity. (In our ex-
tended technical report [5], we study the case in which an-
swering queries is more expensive than forwarding queries.)
One unit of processing capacity may involve some arbitrary
number of CPU cycles, disk 1/0s, and network bandwidth,
but for the purposes of our study, we aggregate all these
sub-component resources required to process a query into
a single unit of normalized processing capacity. Also, we
will say that a node has processed a query when it has ei-
ther admitted, answered, or forwarded it. Any of these three
actions constitutes processing a query. Finally, we assume
that each node has some maximum capacity constraint, and
that each node in the system can process C' queries per time
step. That is, each node can admit, answer, and/or forward
amaximum of C' queries per time step. Each node may exe-
cute some combination of these actions, but can execute no
more than C' of these actions.

3.1 Reservation Ratio (p)

Each node must decide what fraction of its capacity it
should dedicate to each of the actions above.

In particular, nodes admit gC' queries, answer aC
queries, and forward fC queries where g + a + f < 1.
We say that when a node answers a query it has done one
unit of “work.” If a node answers a query that was admit-
ted at some other node, we say that it has done one unit of
remote work (RW). (When a node answers a query that was
admitted locally, it has done one unit of local work.)

A node must expend some of its bandwidth for inject-
ing queries into the network, and we assume that a node
reserves pC = gC' units of capacity at each time step for
query admission. A node’s remaining capacity can be used
to either answer or forward queries.

We are interested in studying Chord networks when they
are under stress and we make the assumption that nodes
have a near infinite supply of queries that they could admit
to the system. However, if all nodes spend their entire ca-
pacity admitting queries (forwarding them along their first
hop), they will have no capacity left over to answer queries
or route them to their destinations. Ideally, we do not want
any queries to be dropped due to a lack of capacity at any
node. Therefore, we want to determine the setting of p that



will result in the highest throughput (RW) and no dropped
queries. We call the setting of p that maximizes RW optimal
rho, denoted by 4.

3.2 Optimal Rho ()

We derive an estimate of g analytically, under the sim-
plifying assumption that all nodes behave symmetrically in
each round of operation. (We use this simplifying assump-
tion only to derive an estimate for p, and not in the remain-
der of the paper.) We start with the capacity constraint that
the total fractions of queries admitted, answered, and for-
warded by a node in a given time step must sum up to a
maximum of one:

a+g+f<1

If all nodes have the same capacity, and admit the same
number of queries pC, we can expect that they will receive
pC queries to which they can provide answers. We there-
fore assume that a = g if we would like to answer all the
queries that are admitted in the system. We letp = a =g
be the ratio of capacity that nodes set aside for admitting
and answering queries. In Chord, a query is forwarded, on
average, through %logN nodes before it arrives at its des-
tination [22]. If we assume that each node must spend a
corresponding amount of its processing capacity forward-
ing queries, such that all queries can arrive at their desti-
nations, then f = 1plog N. In addition, because we do
not want any processing capacity to be wasted, we use strict
equality:

p+p+1png:1
. ) 2
Solving for p:
1
2+ 3log N

If nodes can be expected to behave symmetrically, they
can set p = p to maximize RW.

In a real network, there are various sources of variability
that cause nodes to have non-symmetric loads. As a result,
we may not be able to maximize RW with our estimated
setting if some of the following sources of variability are
present:

p=

1. Non-uniformly distributed node ids. When nodes choose
ids at random, they may not be perfectly distributed
around the Chord ring / address space. As a result, some
nodes may be responsible for forwarding queries to a
larger part of the address space than others. Consider,
for instance, a small network of 3 nodes in which nodes
have ids 0, 1, and 3. In this example, node 0 is responsi-
ble for the largest part of the keyspace, and node 3 must
forward all queries it receives for the keys 4, 5, 6, 7, and
0 to node 0. It is therefore likely that if query keys are
chosen at random from the key space, then node 3 will
receive more queries to forward than if the node ids were
uniformly distributed around the ring. We describe some
approaches that have been proposed to deal with the is-
sue of non-uniformly distributed node ids in Section 8.

2. Non-uniform query key distribution. Query keys will not
necessarily have a uniform random distribution. Some
documents may be more “popular” than others, and keys
that match such documents may appear more frequently
than other query keys. A non-uniform query key distri-
bution will result in some nodes becoming “hot-spots.”

3. Variable hops to destination. While queries will take
élogN hops to arrive on average, some queries may
take more or less hops to arrive at their destinations,
causing transient changes in load at nodes. These tran-
sient load changes can easily be evened out by requiring
that nodes use finite length queues to temporarily store
queries that cannot be forwarded or answered at a partic-
ular point in time. At a later point in time, if capacity is
not fully utilized, the node can service queries from its
queue.

For the reasons above, only a fraction of admitted queries
result in RW. While the third source of variability above,
variable hops to destination, can easily be addressed by hav-
ing nodes use queues to smooth out their load over time, so-
lutions for non-uniform node id and query key distributions
are a topic of active research.

We note that non-uniformly distributed ids can be used as
a proxy for other sources of load variability. A node that is
responsible for a large part of the keyspace in a system with
non-uniformly distributed ids is equivalent to a node that
receives many queries for a “popular” key in a system in
which nodes do have uniformly distributed ids. We do not
model documents or file distributions across nodes in our
work here, and we use non-uniformly distributed node ids
to simulate the effect of non-uniform query key distribution.
While the results we provide in later sections may specify
that non-uniform node ids were used, we expect the results
will be similar for non-uniform query key distributions, and
potentially other sources of load variability.

The policies we propose in Section 4 are complemen-
tary to those we survey in Section 8. Our policies will help
balance any transitory or interim load variations that occur
while the proposed node id balancing schemes are execut-
ing, and our policies will also help balance load in the case
that “non-compliant” or malicious nodes do not follow the
proposed id balancing schemes. In addition, our policies are
practical, easy-to-implement, and when a Chord network is
under stress, they provide increased system throughput (po-
tentially at the cost of “fairness”™).

4 Policies

There are a number of different traffic management poli-
cies that nodes may attempt to use to maximize RW, han-
dle traffic “surges” caused by load variability, and contain
the effects of malicious nodes. In this section, we describe
some basic policies.

A node must decide what mix of its available query band-
width it should use to spend answering queries versus for-
warding queries. When a query arrives at a node, we say



that the query is answerable if the node is responsible for
storing the value corresponding to the key specified in the
query. A query is forwardable if it is not answerable. (Of
course, all queries will eventually be answerable once they
have been forwarded to the appropriate destination node.)
Let A, -ive be the number of queries that arrive at a node
that can be answered at that node, and F,,,;». b€ the num-
ber of queries that arrive that can be forwarded by that
node. Note that A, Can be greater or less than aC (and
Forrive Can be greater or less than (1 — a — g)C even when
p = p at any particular time due to variations in the number
of hops that it takes for queries to travel from their sources
to their destinations.

Nodes first use an incoming allocation strategy (IAS) to
decide how many queries to answer and how many to for-
ward. After decisions about how many queries to answer
and forward have been made, nodes then use a drop strat-
egy (DS) to decide which queries are to be dropped / ig-
nored. We now describe some basic choices for IAS and
DS policies.

41 1AS

In this subsection, we describe various 1ASes. Let A
be the number of queries that are actually answered at a
node and F' be the number of queries that are actually for-
warded by that node in a given unit of time. For instance,
if Az rive > aC, then an IAS may choose to actually an-
swer only A = aC queries. Alternatively, if A,,ive < aC,
then an 1AS may choose to actually answer A = A, rive
queries.

The goal of an IAS is to, given some set of A, rive +
Frive Queries that arrive at a node, decide how many an-
swerable queries and how many forwardable queries should
be processed. Inillustrating various basic options for ASes,
we use a running example in which a node has C' = 12 units
of capacity which it may use to admit, answer, and/or for-
ward queries. In our examples, pC = %12 = 2 units of
capacity are reserved to admit new queries. The remaining
1-pC = 312 = 10 units of capacity are available for
answering or forwarding queries.

We now describe various IAS policies. Note that in our
descriptions, p may take on values in the range [0, 3].

e Null. Null IAS answers up to pC' answerable queries, and
up to (1 — 2p)C forwardable queries. That is, Null IAS
will answer A = min(Agrrive, pC) queries, and forward
F = min(Fyrrive, (1 — 2p)C) queries. Any unused
capacity is “wasted.” For instance, if A, = 1 and
Forrive = 9, NUll IAS will answer A = min(1,%12) =
1 query, and will forward F = min(Furripe, (1 —
2p)C) = min(1,(1-23)12) = min(12,8) = 8 queries.
The extra 1 unit of answering capacity is not re-utilized
for forwarding queries.

e Answer First Priority (AFP). AFP IAS first spends its
available capacity processing any answerable queries that
arrive. Only after answerable queries have been pro-

cessed are forwardable queries processed. More pre-
cisely, AFP first processes A = min(Agrrive, (1 —
p)C) answerable queries, and then processes F

min(Farrive, (1 — p)C — A) forwardable queries. In
our running example, if Ag.pive = 4, then A =
min(Aarrivea(l - p)C) = min(47(1 - %)12)) =
min(4,10) = 4 answerable queries are processed. If

Forrive = 8, then F' = min(Fyrrive, (1 — p)C — A)
min(8, (1 — 1)12 — 4) = min(8,6) = 6 forwardable
queries are processed.

e Answer First Spillover (AFS). AFS IAS works simi-
larly to AFP IAS with the exception that some ca-
pacity is reserved for forwarding queries. In partic-
ular, if Fyprive < (1 — 2p)C then let Fiepioper =
(1 = 2p)C — Fyarrives €l€ Fiefiover = 0. AFS will
process A = min(Aarrive, PC + Fleftover) answer-
able queries and F' = min(Forrive, (1 — 2p)C) for-
wardable queries. For instance, if Ayqrive = 4 and
Forrive = 17, then Eeftover = (1 - 2P)C — Forrive =
(1 -23)12 -7 = 1. AFS IAS will answer A =
min(AarriveapC + Eeftover) = min(4, %12 + 1) =
min(4,2 + 1) = min(4,3) = 3 queries, and forward
F = min(Farrive, (1—2p)C) = min(7,8) = 7 queries.

e Forward First Priority (FFP). FFP processes any for-
wardable queries that arrive first before considering an-
swerable queries. Specifically, FFP first processes F' =
min(Farrive, (1 — p)C) forwardable queries, and then
processes A = min(Agrrive, (1 — p)C — F) answer-
able queries. For instance, if Fripe = 12, then F =
min(FCLTTiU€7(1 - p)C) = mm(l?,(l - %)12)) =
min(12,10) = 10 forwardable queries are processed.
No answerable queries that arrive are processed.

e Forward First Spillover (FFS). FFS IAS works sim-
ilarly to FFP IAS with the exception that some ca-
pacity is reserved for answering queries. In particu-
lar, if Agrrive < pC then let Ajerioner = pC —
Agrrive, €158 Ajertover = 0. FFS will process F' =
Min(Farrive, (1—2p)C+ Aje frover) forwardable queries
and A = min(Aarrive, pC) answerable queries. For
instance, if F,rrive = 10 and Agrrive = 1, then
AleftoveT = PC — Aurrive = %12 -1 =1. FFS
IAS will forward F' = min(Farrive, (1 — 2p)C +
Ajeftover) = min(10, (1 — 2%)12 +1) = min(10,8 +
1) = min(10,9) = 9 queries, and answer A =
min(Aarrive, pC) = min(1,2) = 1 query.

42 DS

Once an IAS has been used to determine how many
queries to answer (A), and how many queries to forward
(F), a DS can then be used to determine exactly which
queries to process. Specifically, if A < Agprive andlor F <
Frrive, then a DS is used to determine which Ag;rive — A
and/or F,,..;ne — F queries to drop.

In this subsection, we describe some DSes.

e Drop Youngest (DY). In this DS, we assume that query



messages have a “hop count” (HC) field. When a query
message is first created, it is given a HC of 0. Each time
that the message is forwarded from one node to another,
the HC is incremented by one. The HC indicates the
“age” of the query. Queries that have been forwarded just
a few times are considered “young,” while queries that
have been forwarded many times are considered “old.”
Inthe DY DS, queries with the smallest HCs are dropped.
The rationale behind DY DS is that the least amount
of effort has been expended on young queries. That is,
young queries have been forwarded by a fewer number
of nodes, compared to older queries, and by dropping
younger queries, the amount of effort that is wasted is
lower.

For example, if an IAS is used to decide that F/ = 8

queries can be forwarded out of F,,..;,. = 12 queries,

then the 4 queries with the lowest HCs will be dropped.

The 8 oldest queries will be forwarded as per a node’s

finger table. Ties are broken arbitrarily.

We note that the HC field of a query may be susceptible

to spoofing by malicious nodes.

e Drop Farthest (DF). In DF DS, queries that have the far-
thest to travel, as measured by the “clockwise distance”
between the key specified in the query and the id of
the current node, are dropped first. The clockwise dis-
tance between two ids id; and id, is defined as d where
idy = idy + d mod Nyae and Ny,q. is the maximum
node id possible. For instance, if Ny, = 12, then the
clockwise distance between 9 and 2 is 5.

To illustrate DF DS, consider an example in which a node

with id 8 (Vg) uses an 1AS to decide that F' = 2 queries

can be forwarded out of Fy,..;pe = 4 queries. Also,
assume that N, = 32. If the ids of the 4 queries
are {9,12,17, 1}, then the corresponding clockwise dis-

tances between Ng and the query keys are 1, 4, 9, and 25,

respectively. DF DS drops the queries with keys 17 and 1

since they have to travel the farthest clockwise distances.

e Drop Random (DR). In this DS, queries are dropped at
random to meet the quotas set by an IAS, irrespective of
their age or clockwise distances to their destinations.

4.3 Retransmission Policy )

After issuing a query, a nodé may not receive an answer
because the query was dropped along the path to its destina-
tion. The node may decide not to retransmit the query, but
this might lead to unhappy users. Alternatively, the node
may retransmit its query after a fixed timeout period. In our
evaluations, we found that retransmissions result in lower
RW due to queries that must travel long distances. Such
queries often get dropped and retransmitted, thereby deny-
ing service to new queries. Due to space limitations, we re-
fer the interested reader to our extended technical report [5]
for more details on retransmissions.

5 Threat Model
In this section, we explicitly state the expected behaviors

for good and malicious nodes in our model.

e Good Nodes. We assume that good nodes are altruis-
tic in the sense that they would like to maximize the
total number of queries that are answered in the net-
work. That is, they would like to maximize the RW.
Good nodes, therefore, set p = p.

e Malicious Nodes. Even though various mechanisms to
prevent malicious nodes from joining a Chord network
might be deployed, it may still be possible for a limited
number of nodes to breach such defenses. For instance,
even if nodes are required to have certified node ids (as
in [2]), a malicious adversary could compromise the se-
curity of existing hosts that have valid node ids.

There are many possible attacks that malicious nodes
can carry out. In this paper, we are interested in ma-
licious nodes that blast useless queries in an attempt
to deny service to legitimate queries. Malicious nodes
spend all of their capacity admitting queries into the sys-
tem, and spend none of their capacity answering or for-
warding queries on behalf of other nodes. We therefore
model malicious nodes as nodes that set ¢ = 1, and
a=f=0.

o \krifiable Node Ids. We require that nodes in a Chord
network choose verifiable node identifiers. For instance,
a node’s id might be required to be the hash of its IP
address. Such a choice for a node id is said to be veri-
fiable [20], and constrains a node’s ability to choose its
own id. Without verifiable node ids, a malicious node
could choose an id that would allow it to take control of
a particular part of the keyspace containing pairs that it
would like to censor.

e Adversarial Model. The malicious nodes that we study
in this section are interested in simply introducing extra
work into the system, and are not interested in attack-
ing particular victim nodes 2. As such, malicious nodes
are given node ids at random from the node id address
space. The queries that they admit are for random keys,
and are sent to destinations that are distributed at ran-
dom around the Chord ring.

6 Traffic Limiting

To deal with malicious nodes that pose the threats out-
lined in the previous section, we propose traffic limiting
countermeasures in this section. As malicious nodes ad-
mit more queries than good nodes, one approach to dealing
with them is to limit the amount of traffic that nodes will
accept from each other.

We will now describe two complementary traffic limit-
ing mechanisms, an admission limit and a forwarding limit.
Both mechanisms take advantage of observations that we
make regarding expected traffic patterns of queries in a
Chord network consisting of all good nodes. The admis-
sion limit applies to queries that have just been admitted

2Malicious nodes that target particular victims can be considered in
future work.
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Figure 1. N}, uses an admission limit to cap the number
of queries arriving from N;. N, uses a forwarding limit to
cap the number of queries arriving from Nj.

and have a hop count of one, while the forwarding limit ap-
plies to queries that have been forwarded at least once and
have a hop count greater than one. In our descriptions of
these limits, we will refer to three nodes N;, Ny, and N, as
depicted in Figure 1.

6.1 Admission Limit

We start by describing the first of these two traffic lim-
iting mechanisms, the admission limit. When a good node
admits a query, the query key can be expected to randomly
fall anywhere in the address space so long as a good hash
function is used to map search terms to query keys. One-
half of the queries admitted by a good node are expected
to have keys that map to the half of the Chord ring that is
farthest from it. Namely, a good node with id i, N;, is ex-
pected to have half of the queries that it admits have keys
in the range [i + 2'°6 V=1 — 1). If a key is in the range
(pred(i), i — 1], the query will be handled locally, but most
of the query keys in the farthest half of the ring will be in the
range [i + 2'°8N=1 pred(i)]. Such queries will be routed
to the node pointed to by the log Nth entry in its finger ta-
ble. That is, such queries will be routed to the node with the
smallest id that is larger than i 4 2'°8 N—1,

Let node N, be the node that has the smallest id that is
larger than i+2!°8 =1, Note that since the node N; is good,
it generates a total of pC queries. Node N}, can therefore
expect that one-half of these pC' queries should be routed
to it on the first hop. If node IV, receives more than %ﬁC
queries from node N;, on average, then node N; may be
admitting too many queries and/or might be malicious. A
node N}, that uses an admission limit and receives queries
from NV; accepts no more than %ﬁC queries from N; with a
hop count of one (HC=1).

We could further generalize the admission limit rule to be
parametrized based upon the distance between the sending
and receiving node. The farther the distance between the
sending and receiving node, the more queries the receiving
node should allow the sending node to admit. Consider a
sending node NN; and a receiving node Ny. Let s and h be
the respective node ids of V; and Nj,. Also, let D be the
circumference, or total distance, around the ring. The rela-

tive distance between the sending node N; and Ny, is "'%h,

Parameter Value
Number of Nodes (V) 256
Capacity (C) 1000
Reservation Ratio (p) p=0.16
IAS Null
DS Null
RTX No
Id Placement Non-Uniform

Table 1. Baseline Simulation Parameters

and we can generalize our admission limit as follows: the
maximum number of queries that N, should accept from

N; with HC=1 per unit time is, on average, @,30.

6.2 Forwarding Limit

In addition to the admission limit, a good node can use a
forwarding limit.

Consider our node N (from Section 6.1) that sends
queries to a node N, where N, is the node with the smallest
id that is larger than h + 2'°8 N =2 (N, is one quarter of the
way around the ring from Ny .) All queries that Ny, sends to
N, with HC > 1 have already been admitted. Once these
queries arrive at N, they are to make progress towards the
forth-quarter of the ring with respect to V;, the node that
originally admitted the queries. (Queries that are to make
progress towards the third-quarter of the ring are forwarded
to nodes in between Ny, and N,.) Node NV, is responsi-
ble for forwarding approximately (1 — 24)C queries, as per
our derivation of p. Hence, one-half of these queries are to
be forwarded to the third-quarter of the ring and one-half
of these queries are to be forwarded to the forth-quarter of
the ring. Therefore, node IV, can expect to receive approx-
imately %(1 — 2p)C queries from N}, that have HC > 1.
If node IV, receives more than (1 — 25)C queries with
HC > 1 from node Ny, on average, then node Ny, may be
forwarding too many queries and/or might be malicious. A
node NV, that uses a forwarding limit and receives queries
from N}, accepts no more than (1 — 2p)C' queries with
HC > 1 from Ny,.

In Section 7.5, we experiment with using the admission
and forwarding traffic limits we described here, and we find
that imposing such limits is able to mitigate the impact that
malicious, blasting nodes are able to have on RW.

7 Results
7.1 Simulation Setup

In this section, we describe the results of various simu-
lations that we ran to determine which of the policies de-
scribed in Section 4 perform best under different scenarios.

The goal of our evaluations is to build a fundamental un-
derstanding of the issues and trade-offs involved in using
the various policies we outlined in Section 4. Our evalua-
tions are not designed to predict the performance of an ac-
tual system, but to gain an understanding of the trends and



trade-offs involved in using the different policies. While we
do not expect our simulations to predict actual query loads
(as might be observed in a real network), we do expect them
to tell us about relative performance that can be achieved by
using the different policies that we described in Section 4.

In the evaluations described below, we simulated a Chord
network using the baseline parameters in Table 1. In our
evaluations, we vary some of these parameters, and we ex-
plicitly mention when we do so. In reporting results of sim-
ulations, if we do not mention a particular parameter, its
value is set as per the baseline value specified in Table 1.

In our simulations, there are N = 256 nodes in the net-
work at any instant, and nodes do not join and leave the net-
work as we are interested in studying the system’s steady-
state behavior. The same trends that we see in our small
256-node simulations can be seen in larger Chord networks,
and we clearly expect real Chord networks to have much
larger numbers of nodes.

For simplicity, we assigned all of the nodes in the net-
work the same capacity, C = 10%. Hence, the maximum
amount of total work, which includes local plus RW, that
can take place in an N = 256-node network in one time-
step is CN = 10%(256) = 2, 560, 000. To keep our figures
reasonable and meaningful, however, we normalize all our
results by dividing by C = 10* such that the maximum total
work is N = 256, but all simulations are carried out with
a “precision” of C = 10*. Therefore, the maximum total
work that can be achieved in one time-step in a particular
simulation is 256.

7.2 Steady-State Performance

A Chord network with N nodes achieves steady-state
within k log N rounds, where k = 2, for the IASes and DSes
we consider in this paper.

In this subsection, we study the number of rounds re-
quired to achieve steady-state for our various 1ASes and
DSes.

Figure 2 measures RW over time for the various 1ASes.
In a Chord network of N nodes, messages take an average
of 1 log N hops to arrive at their destinations. As such, it
is reasonable to expect that if the system achieves steady-
state, it should achieve it in ©(log N) rounds. In the case
of Figure 2, steady-state is achieved in less than 2log N =
2log 256 = 16 rounds.

While the RW measured for each 1AS achieves steady-
state in about 12 rounds, note that the “hump” at time
t = 8 for AFP is significant. When forwardable queries
are dropped due to answerable queries being processed first
at time ¢ = 8, this causes a temporary “vacuum” of queries
that can be answered shortly thereafter.

Figure 3 shows that the various DSes we consider also
achieve steady-state within 2log N rounds. The DF and
DY DSes experience a hump because they favor processing
the closest and oldest queries first, respectively. Once the
closest and oldest queries are answered at ¢ = 8, there is

a drop in RW because farther and younger queries, respec-
tively, were sacrificed in forwarding the closest and oldest
queries to their destinations.

All simulations in this paper are run until steady-state.

7.3 1AS

AFP 1AS maximizes RW.

Turning our attention back to Figure 2, we can see how
RW varies with time for various 1ASes. Initially, at ¢ = 0,
no queries have been admitted, forwarded or answered.
During the first round of the simulation, nodes admit 5C
queries and forward them along their first hops. Approx-
imately, %logN = 4 rounds later, these queries arrive at
their destinations, and RW increases from 0 at ¢t = 0 to
varying double-digit numbers for various IASes.

In the steady-state in Figure 2, we can see that AFP 1AS
maximizes RW. If a query has arrived at its destination, ca-
pacity should be given to answering it before admitting or
forwarding other queries to maximize RW. If a query arrives
at its destination, and it is not processed, the forwarding ca-
pacity that was used at other nodes along the path to the
destination was needlessly wasted.

From Figure 2, we also see that the AFS, FFS, and Null
IASes result in the same of amount of RW. In a given round,
if a node using AFS, FFS, or Null 1AS receives enough
queries such that Agyripe > pC and Fprpive > (1 — 2p)C,
then the node is overloaded and will answer A = pC and
forward F' = (1 —2p)C queries. In the case that the node is
underloaded (A, rive < pC and Fyprive < (1 —2p)C), the
node will answer A = A, rive and forward F' = F rive
queries. So, in the case that a node is either underloaded or
overloaded, it answers and forwards exactly the same num-
ber of queries under the AFS, FFS, and Null 1ASes.

There are two additional cases to consider. In the case
that Agrrive > pC and Furrive < (1 — 2p)C, AFS, FFS,
and Null 1AS will all forward F, ;v queries. While Null
IAS and FFS IAS will answer pC queries, AFS IAS will
answer pC + ((1 — 2p)C — Farrive) QUeries since excess
forwarding capacity will be used for answering queries.
However, when p = p (as is the case in Figure 2), (1 —
2p)C — F,.rive 15 0, On average. Hence, in the average
case, AFS IAS performs equivalently to FFS and Null IAS
when A, rive > pC and Foppive < (1 —2p)C.

The final case is when A, rive < pC and Fuppive >
(1 —2p)C. AFS, FFS, and Null 1AS will answer A, rive
queries. Null and AFS IAS will forward (1 — 2p)C queries
while FFS IAS will forward (1 — 25)C + (pC — Agrrive)-
When p = p, pC — Agrrive 1S 0, ON average. Therefore,
FFS performs similarly to AFS and Null 1AS, on average.

FFP IAS results in much less RW than the other 1ASes
because even when queries arrive at their destinations, they
are then dropped in favor of forwardable queries.

While Figure 2 shows us how our 1ASes perform when
p = p for non-uniformly distributed ids, Figure 4 shows
us how they perform for other settings of p. Each point in
Figure 4 is the result of a simulation which was run until
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steady-state. The key observation that we make from Fig-
ure 4 is that AFP is the best-performing IAS irrespective of
the rate at which nodes are admitting queries.

Another observation from Figure 4 is that when p = p for
AFP the RW is about 22. Since there are 256 nodes in our
simulation, and each of them dedicate p of their capacity to
answering queries, we might expect that the maximum pos-
sible RW that can be achieved is 256p = 256(0.16) = 42.7.
Of course, in order to achieve a RW of 42.7, every query
that is admitted must arrive at its destination. Unfortunately,
some of the queries are dropped along the way to their des-
tination, and some of the queries that arrive at their destina-
tion nodes cannot be processed due to a lack of answering
capacity at the destination node. However, with a RW of
22, almost half of the queries that are admitted are dropped!

To understand why less than one-half of admitted queries
were answered, consider that when we derived the equa-
tion for p in Section 3.1, we assumed uniformly distributed
node ids, equal load at each node, and each node to behave
symmetrically. However, in simulations used to generate
Figure 4, nodes chose their ids at random, and the ids are
not uniformly distributed around the ring. The load varia-
tions caused by non-uniform node id distribution are quite
significant, and result in lost RW.

Figure 5 shows how various IAS policies fare at differ-
ent p’s when nodes have ids that are distributed uniformly.
All 1ASes we consider perform equivalently when p < 4.
When p = p, our 1ASes achieve RW of 42.7, as expected.
When p > p, an overabundance of queries are being admit-
ted into the system and the AFP, AFS, and FFS IAS maxi-
mize RW.

74 DS

DF DS maximizes RW both when ids are and are not uni-
formly distributed. DY DS approximates DF DS, but does
not perform quite as well.

Figure 3 shows that the DF DS is the best of all the DSes
we considered at maximizing RW. The DF DS drops those
queries that have the farthest clockwise distances to travel
around the Chord ring. Those queries that have the longest
distances to travel have the least probability of making it to
their destinations due to competition for forwarding capac-
ity at nodes between their current location and their desti-
nations. Each node that a query needs to traverse to arrive

at its destination is a potential location at which it might
be dropped. By dropping those queries that have the least
probability of arriving at their destinations, DF DS saves
forwarding capacity that might be wasted on queries that
might get dropped on the way to their destinations. The
DF DS uses this saved capacity to forward queries whose
destinations are the closest and thereby forwards queries
that have the highest probabilities of not being dropped on
the way to their destinations. The DF DS has the highest
throughput, and results in the highest RW of the DSes that
we considered.

The downside of DF DS is that those queries that have to
travel the farthest distances around the ring are not treated
“fairly.” Queries that have to travel far distances are nat-
urally at a disadvantage because they need to travel more
hops than queries that have to travel closer distances, and, in
general, have a higher probability of not making it to their
destinations. DF DS further exacerbates this problem by
dropping such queries early in their life span. Queries that
have to travel far distances, and are are dropped due to DF
DS can be retransmitted, but still face a relatively high prob-
ability of being dropped upon retransmission.

DY DS achieves almost as much RW as DF DS in Fig-
ure 3. DY drops the youngest queries— those that have trav-
eled the fewest hops towards their destinations, and favors
the oldest queries that have taken the most hops towards
their destinations. To an extent, the DY DS approximates
the DF DS, and uses the hop count as an indication of how
far a query has traveled. If a query is “old” and has a large
hop count, it is probably close to its destination, and will not
be dropped as compared to a “young” query with a small
hop count that is probably far from its destination.

Figures 6 and 7 measure RW for different settings of p for
the various DSes in networks that do and not have uniformly
distributed node ids, respectively. We find that the choice
of DS is irrelevant when node ids are uniformly distributed
and p < p. We also find that DF DS results in more RW
than DY DS regardless of the spacing of ids when p > 4.
We observe that DF DS is able to provide a relatively high
maximum RW of 25 when p = 0.26, a setting of p that most
other policies would not be able to perform well under.

7.5 Malicious Nodes
IASes and DSes that improve performance also help deal
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with malicious nodes in Chord.

Figures 8 and 9 measure how RW varies for increasing
numbers of malicious nodes for different IASes and DSes
in a network with a total of 256 nodes. The figures show
that the AFP 1AS and the DY and DF DSes result in slightly
more RW than our baseline policies when there are mali-
cious nodes in the graph.

The traffic management policies that we describe in this
paper for DHTs always result in improved performance,
both in the case when malicious nodes are present and in
the case when malicious nodes are not present.  On the
other hand, traffic management policies for unstructured
P2P networks are more sensitive to the number of mali-
cious nodes present. In Gnutella, for instance, in [6] we find
that a “Null” IAS with “PreferHighTTL” DS (the baseline
policies) maximized RW when no malicious nodes were
present but resulted in an abysmal effect when malicious
nodes were present in the network. The 1ASes that we used
to contain attacks in Gnutella, on the other hand, performed
well when malicious nodes were present, but resulted in
less RW than the baseline policies when no malicious nodes
were present. In Chord, the baseline policies’ RW perfor-
mance drops off sub-linearly with the number of malicious
nodes, and the AFP IAS and non-random DS policies pro-
vide an incremental improvement in RW both when mali-
cious nodes are and are not present. Hence, it makes sense
to use them whether or not malicious nodes are present.

Traffic limits can increase RW significantly in the pres-
ence of malicious nodes, and can be used to virtually elimi-
nate “flood” loss due to malicious nodes.

In Section 6, we developed traffic limits based on the ex-
pected query load in a Chord network to mitigate the effects
of malicious nodes blasting queries. We evaluate the effec-
tiveness of the traffic limiting techniques in this subsection.

Figure 10 was generated by running simulations in which
we measured RW as the number of malicious nodes in-
creased in a network with uniformly-balanced ids. There
are four curves plotted in the figure. The “Max” line shows
the maximum possible RW in a system with a particu-
lar number of malicious nodes. For example, in a sys-
tem with no malicious nodes the maximum RW is pN =
(0.16)(256) = 42.7 for our network. As malicious nodes
are introduced into the system, we do not expect them to
contribute RW. If there are 10 malicious nodes, for exam-
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Figure 7. RW vs Rho for Various
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ple, then the maximum RW we can expect is p(N — 10) =
(0.16)(255) = 40.8.

The “No Limits” curve shows the RW in a system where
nodes do not impose admission or forwarding traffic limits.
The “With Limits” curve plots RW when nodes use both the
admission and forwarding traffic limits. Finally, the “Ideal”
curve plots the RW that would result if good nodes could
use an oracle to help them decide whether or not to process
a query. That is, upon receiving a query, a good node can
submit the query to an oracle, and decide to process it only
if the oracle reveals that the query was admitted by another
good node.

From the figure, we can see that imposing traffic limits
can result in a 25 percent or more increase in RW. For in-
stance, if there are 32 malicious nodes in the network, the
RW is only 15 when no limits are used, whereas imposing
limits results in a RW of 19.4, an increase of 29.3 percent.
From Figure 10 we can also see that imposing traffic lim-
its results in a RW that is very close to the “Ideal” RW that
could be achieved if good nodes used an oracle. The dis-
tance between the “With Limits” and the “ldeal” curve is
greatest at 12 to 16 malicious nodes, and even then so, im-
posing traffic limits results in 97 percent of the RW achiev-
able of the ideal. Hence, traffic limits are effective at screen-
ing out excessive queries sent by malicious nodes.

However, the mere presence of the malicious nodes in
the network has an impact on RW even if most of their
excessive queries can be filtered out. The loss in RW due
to the malicious nodes has two major causes: 1) queries
that happen to be forwarded to malicious nodes as they at-
tempt to traverse the path from their source to their desti-
nation are dropped at the malicious nodes, and 2) legitimate
queries that arrive at good nodes may be dropped in favor of
processing useless queries that were admitted by malicious
nodes. The loss in RW that occurs due to cause (1) is called
structural loss, and the loss in RW that occurs due to cause
(2) is called flood loss.

In the simulation that was used to generate Figure 10,
most of the loss in RW is structural. When there are no ma-
licious nodes in a network with uniformly-balanced ids, the
RW that can be achieved is 42.7. However, even in the ideal
case that good nodes use an oracle to completely eliminate
flood loss, a significant amount of RW is lost due to the
presence of malicious nodes that drop all queries that are
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forwarded to them. For instance, if even just under 10 per-
cent of the nodes in the network are malicious (24 malicious
nodes), the maximum RW that can be achieved with an or-
acle is 24.2. Over 45 percent of the RW lost is structural.
While imposing traffic limits can recover approximately 4.7
units of RW due to flood loss, 18.5 units of RW due to struc-
tural loss can be recovered by eliminating malicious nodes
from the network. In this particular case, flood loss only
accounts for 20 percent of the total loss; the remaining 80
percent of the loss is structural. Hence, further work must
be done to detect malicious nodes and eliminate them. Nev-
ertheless, the traffic limits that we propose are a significant
step that contains the effects of malicious nodes while they
are in the process of being detected.

8 Related Work
8.1 Load Balancing in Chord

The IAS and DS policies we proposed in Section 4 are
effective regardless of whether or node ids are uniformly
distributed in a Chord network. However, the traffic limiting
techniques we propose are most effective when node ids are
uniformly distributed.

To uniformly balance ids, Stoica et. al. in [22] propose
that each real node in a Chord system should host log N
virtual nodes. While Stoica et. al. showed through simula-
tion that virtual nodes can be used to balance load, this ap-
proach has the disadvantage that each real node will have to
maintain log? N connections instead of log N connections.
Alternatively, Karger and Ruhl in [12] provide a node id
balancing scheme in which each real node is only required
to maintain log IV active connections for one of its virtual
nodes at a time, but may require many nodes to change
which virtual node is active when some real node leaves the
system. Manku [14] develops a node id balancing scheme in
which nodes sample the id space upon joining, and choose
an id that will lead to a nearly uniformly balanced spacing
between nodes participating in the system.

While these approaches may achieve node id balancing
at the expense of active connections and network stability,
there is still much room for load variability due to non-
uniform query key generation. Karger and Ruhl in [12] also
provide an item balancing scheme in which nodes can col-
laborate to re-assign node ids to balance load based upon
the run-time distribution of query keys.

30

Number of Malicious Nodes

Figure 9. RW vs Number of Mali-
cious Nodes for Various DSes

10

0.05

01 015 02
Fraction Malicious Nodes

Figure 10. RW vs Number of Mali-
cious Nodes Using Traffic Limits

© 50 60 70 0 0.25

The 1ASes and DSes we proposed in this paper can be
used together with the techniques proposed in [22], [12],
and [14] to balance load, especially when the network is
under stress. Once load is approximately balanced, the traf-
fic limits that we proposed can be used to virutally eliminate
flood loss due to a blasting attack.

8.2 P2P Security

Much work has taken place to date on how to organize
and optimize P2P networks using unstructured (i.e., [10]),
DHT (i.e., [18, 22, 19]), and non-forwarding (i.e., [23]) ap-
proaches. Various techniques that address how to prevent,
detect, contain, and recover from attacks in P2P networks
have been studied in the literature.

While some work on security in DHTs has been pub-
lished [20, 2], work on security in unstructured and non-
forwarding networks has also taken place (e.g., [6, 7, 8,
1,9, 15]). The reader is refered to reference [16] for more
complete coverage of related work in secure unstructured
and non-forwarding P2P systems.

9 Conclusion

In this paper, we developed a model to study performance
and DosS issues in DHTSs, and we specifically focused on the
Chord DHT. We developed a number of 1ASes and DSes for
Chord, and evaluated them. We modeled malicious nodes
that blast queries into the network with the intent of denying
service to legitimate queries, and developed traffic limits to
mitigate such a blasting attack. We found that;

e AFP IAS maximizes RW.

e DF DS maximizes RW both when ids are and are not
uniformly distributed. DY DS approximates DF DS, but
does not perform quite as well.

e |ASes and DSes that improve performance also help deal
with malicious nodes in Chord.

o Traffic limits can increase RW significantly in the pres-
ence of malicious nodes, and can be used to virtually
eliminate “flood” damage due to malicious nodes.
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